

ANNUAL REPORT 2011

Mech

UIUC, August 18, 2011

Mold Flow with Local EMBr and Evaluation using Nailboard and Oscillation-mark Measurements

Chuanbo Ji (Visiting scholar/Ph.D. Student) &Brian G Thomas

School of metallurgical & ecological engineering University of Science & Technology Beijing Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Objectives

 To investigate how the electromagnetic brake affects the steel flow in continuous casting mold

-3D Navier-Stokes equation for flow in Nucor steel nozzle and mold with 3 different magnetic field

- Experiment on nail board dip tests and oscillation mark measurements
- Validate the computational results with experimental measurements

Process parameters

Nozzle inlet velocity	0.53 <i>m/s</i>		
Casting speed	3.0 <i>m/min</i>		
Mold width	1302 mm		
Mold thickness	90 mm		
Mold length	2500 mm		
	$25mm(width) \times 52mm(height)$		
Nozzle port dimension	rectangular with top and bottom		
	having 12.5 mm radius chamfered		
Nozzle bore diameter (inner/outer)	110mm/150mm		
SEN depth	220 <i>mm</i>		
(from slag-steel interface to top of port)			
Density(ρ)	$7000 \ kg/m^3$		
Viscosity(μ)	0.006 kg/m s		
Nozzle port angle	45 degree downward		
Shell	Yes		
Gas injection	No		

Mold mesh and Boundary conditions

 ~104,620 hexahedral cells in Quarter domain

•1/4 mold was simulated with two symmetric plane to reduce computing cost

-Mold inlet: The velocity and turbulence parameters at the mold cavity inlet are specified using the results calculated at the nozzle port.

-Free surface: A zero-shear condition is specified at the mold top surface, Standard wall laws are used. -Outlet: P_{gage}=0

•C. Ji

9

Numerical model

 $\partial \overline{u_i} = 0$ Continuity equation Continuity equation $\frac{\partial u_i}{\partial x_i} = 0$ Navier-Stokes equations: $\frac{\partial \overline{u}_i}{\partial t} + \frac{\partial \overline{u}_i \overline{u}_j}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\nu \frac{\partial \overline{u}_i}{\partial x_j} \right) + \frac{\partial R_{ij}}{\partial x_j}$ Reynolds stresses: $R_{ii} = -\overline{u'_{i}u'_{i}}$ where, $R_{ij} = -\overline{u_i'u_j'} = v_t \left(\frac{\partial \overline{u_i}}{\partial x_i} + \frac{\partial \overline{u_j}}{\partial x_i}\right) - \frac{2}{3}k\delta_{ij}$ To resolve excessive diffusion calculated by Standard k-& Model, Filtered URANS model was applied to capture large-scaled transient features of flow. $v_{\rm t} = C_{\mu} \min(1.0, f) k^2 / \varepsilon$ Johansen, J. Wu, W. Shyy, Filter-based unsteady RANS computations, Int. J. Heat and Fluid Flow, 25, 2004, pp. 10-21. $f = \Delta \varepsilon / k^{3/2} \Delta = \sqrt[3]{\Delta x \Delta y \Delta z}$ Where Δ is the constant filter size defined as the cube root of the maximum cell volume in the domain, for fine grids, f is smaller than 1, so viscosity decreases, and there is less "filtering" of the velocities relative to the standard k- ε URANS. University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab C. Ji 10

Inuous Casting

Mold Boundary conditions

- -Solidification shell: Mass and momentum sinks extract fluid through solidifying shell boundaries
- -Solid shell as a separate domain included in the model
- -Enhance wall treatment(EWT) applied at wall boundary

C. Ji

11

Fluent Model Validation

• To check MHD model, the typical 3D channel case is adopted.

Casting

0

õ

0.1

Nozzle velocity contours

on wide face center plane

0.05 X

õ

0.2 Х

-1.26

-1.28

-1.3

0

0.1

0.05 X

Nozzle velocity vectors on

wide face center plane

-1.26

-1 28

-13

velocity 0.49m/s No EMBr

velocity 0.33m/s EMBr current 276A Velocity 0.27m/s EMBr current 260A

Max mold top surface Max mold top surface Max mold top surface Max mold top surface velocity 0.20m/s EMBr current 221A

C.Ji

Nail board test

٨h

University of Illinois at Urbana-Champaign

•Metals Processing Simulation Lab

Nail board test result 260A

.

C. Ji

22

Nail	∆hin(mm)	Din(mm)	∆hout(mm)	Dout(mm)	Vin(m/s)	Vout(m/s)	Vavg(m/s)
1	0.4	5	0.5	9.9	0.12	0.09	0.10
2	1.2	5	2.4	10.2	0.23	0.20	0.21
3	2	5	1.5	11.1	0.30	0.15	0.22
4	1.5	5	3.5	10.8	0.26	0.24	0.25
5	1	5	0	10.8	-0.20	0.00	-0.10
6	2	5	3.2	11.5	0.30	0.22	0.26
7	1	5	2.3	10.8	0.20	0.19	0.20
8	1	5	1.5	10.5	-0.20	-0.15	-0.18
9	0	5	1.5	10.5	0.00	0.15	0.08

C.Ji

23

Summary

- Electromagnetic brake was applied in continuous casting mold to control the flow pattern.
- Three different magnetic field strength simulations were performed to investigate the magnetic field effect on the mold flow.
- Increase the magnetic field strength in the mold cavity cause the high free surface velocity and increase the fluctuation at the meniscus.
- Nail board dip tests have been performed at Nucor-Decatur, and used to find:
 - Velocity profiles near the top surface steel/slag interface in the mold, including both speed and direction
 - Liquid level profiles
- molten steel velocity is highest about midway between narrow face and SEN, as expected.
- The oscillation mark can match the nail profiles in the surface of the molten steel. The trend of a high wave near the narrow face and then slopes downward across the wide face.

University of Illinois at Urbana-Champaign

27

C. Ji

Acknowledgements

- Continuous Casting Consortium Members (ABB, Arcelor-Mittal, Baosteel, Tata Steel, Magnesita Refractories, Nucor Steel, Nippon Steel, Postech, Posco, SSAB, ANSYS-Fluent)
- Nucor steel Decatur(Williams Bob; O'Malley Ron)
- CHINA SCHOLARSHIP COUNCIL
- Graduate students and visiting scholar in the lab

University of Illinois at Urbana-Champaign • Mechanical Science & Engineering • Metals Processing Simulation Lab • C. Ji • 28